
Advanced Math. Models & Applications 

Vol.2, No.1, 2017, pp.6-13                                            

 

 
6 

 

SEQUENTIAL MODELS OF PHYSICAL PHENOMENON 

AND THE JUSTIFICATION OF MATHEMATICAL MODELING 

 

S. Serovajsky1 

 
1Al-Farabi Kazakh National University, Almaty, Kazakhstan  
 

Abstract.  The substantiation of passing to the limit to the balance relations in the determination 

of the mathematical models is proposed. This is based on the sequential method.  

Keywords: mathematical model, limit, sequential method, generalized solution. 

 

AMS Subject Classification:  35D99, 39A60, 46F99.  

 

Corresponding Author: Prof. Simon Serovajsky, Al-Farabi Kazakh National University, 71 Al-

Farabi ave., 050040 Almaty, Kazakhstan,  e-mail: serovajskys@mail.ru  

 

Manuscript received:  18 February 2017 

 

 

1.    Introduction   

 

The standard method of the determination of mathematical models begins with 

the selection of the given area in the elementary volume. Then the balance 

relations are obtained there with using of physical laws. The next step is passing 

to the limit as this volume is compressed to a point. The equations that are the 

result of this transformation are the base of the mathematical model. 

It should be noted that there is a step, requiring the strictly justification. This is 

the passage to the limit, one of the most important mathematical procedures, to 

which decided to treat with the utmost care. The assumption of the high smoothness 

of the considered state function is usually used here (see, for example, [8]). 

The smoothness of the state of the system corresponds to the notion of the 

classic solution of mathematical physics problems. It can be proved by means of 

the theory of the considering equations (see, for example, [2]). However, this is 

done after the equation was obtained. This theory does not apply at the stage of 

construction of the mathematical model. 

We could consider also the generalized solution of mathematical physics 

problems. This is based on the theory of distributions (see, for example, [9]). The 

generalized solution uses weaker requirements for the parameters of the problem 

than the classic one (see, for example, [2]). The integral relations that determine 

the generalized solution have the directly physical sense. However, it uses a priori 

assumption about the properties of the state function too. 

We propose a method of mathematical modeling that requires no a priori 

assumptions about the properties of the state function of the system. This is based 

on the sequential technique. This is an analogue of the proof of the completion 

theorem (see, for example, [3]) and the alternative theory of distributions [1]. The 

practical implementation of this approach is an analogue of the convergence 
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justification for the finite difference method (see, for example, [4]). The idea of 

the sequential justification of mathematical modeling is used in [7]. We illustrate 

it in the simplest example of the heat transfer process. 

 

2. Simplest classic mathematical model of the heat transfer phenomenon 

 

Consider the stationary heat transfer phenomenon for the one-dimensional 

case. Suppose there exists a source of heat. Then the change of the quantity of 

heat on an interval ,x x h 
   is 

                                       ( ) ( ) ,

x h

x

q x   q x h f d 


                                           (1) 

where the known function f characterizes the density of the source of heat. The 

flux of heat at the concrete point x is proportional to the difference between the 

temperature u at this point and at the previous point x–h. If the length h is 

small enough, then the value q can be determined by Fourier law  

                              
( ) ( )

( ) ( ) ,
u х u х h

q х k х
h

 
                                        (2)                                                

where k is the coefficient of the heat conductivity. 

Suppose the function u is twice continuously differentiable. From the 

equalities (1), (2) after passing to the limit as h  0 it follows the equality 

                                    
( )

( )  ( ),  (0, ),
d du x

k x f x x L
dx dx

 
  

 
                            (3) 

where L is the length of the body. This is the stationary one-dimensional heat 

equation. Let the temperature at the ends of the body is zero. Then we obtain the 

boundary conditions 

                                                u(0) = 0,  u(L) = 0.                                               (4) 

The boundary problem (3), (4) is the mathematical model of the considered 

phenomenon under the given suppositions. 

The twice continuously differentiable function on the interval [0,L] that 

satisfies the equalities (3), (4) is called the classic solution of this problem. We 

can prove that the problem (3), (4) has a unique classic solution under some 

suppositions about the known functions k and f (see, for example, [8]). 

Use the finite difference method for finding the approximate solution of this 

problem. Divide the interval (0,L) into M equal parts. Determine the step  h = L/M  

and the points ,  0,..., .ix ih i M   Determine the standard difference operators 

1 1: ,   :M M M M

xx
   R R R R  

by the equalities 

   1 1/ ,  1,..., ;  / ,  0,  ..., 1,i i i x i i ix
v v v h i M v v v h i M          

where ( ).i iv v x  If the function ( )v v x  is continuously differentiable, then these 

formulas approximate its derivative at the point хi. 

The classic solution of the problem (3), (4) is continuously twice 

differentiable. We approximate the equation (3) by the equality  
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                                        = , 1,..., 1,x i i ix
k u f i M                                                (5) 

where  

 

11
= ( ),  = ( ), ( ) .

i

i

x

i i i i i

x

u u x k k x f f d
h

 


    

We add also the boundary conditions 

                                                     0 0,  0.Mu u                                                 (6) 

The system of linear algebraic equations (5), (6) can be solved by means of 

the marching method. Therefore, we find all values ui, namely the grid function. 

Then we determine its linear interpolation  

                                 1( ) , ( , ),  1,..., 1.h i x i i iu x u x u x x x i M     
                  

(7) 

For the justification of the finite difference method, it is necessary to prove the 

convergence uh  u in the class of the twice continuously differentiable functions 

as h  0, where the limit u is the classic solution of our boundary problem (see 

[4]). 

Note that we use the properties of the classic solution for the first step of 

analysis (this is mathematical modeling) and for the final step too. We could 

prove the continuously twice differentiability of the solution of the boundary 

problem by means of the differential equations theory. However, we can obtain 

this result, if the equation (3) has already given. We cannot any possibilities to 

use it for passing to the limit before the determination of the equation. 

Therefore, the problem of the justification of modeling is open. 

 

3.    Generalized model of the stationary heat transfer phenomenon 
 

We considered the classic solution of the boundary problem. However, maybe its 

generalized solution will be applicable for this case. The generalized solution of the 

problem (3), (4) is an element u of Sobolev space 1

0H  of all square Lebesgue 

integrable functions on the interval (0, )L  with its first derivatives and zero values on 

the boundary. Besides, it satisfies the integral equality 

                         
1

0

0 0

( ) ( )
( ) ( ) ( )   

L L
d x du x

k x dx x f x dx H
dx dx


      .                      (8)             

Each classic solution of the boundary problem is its generalized solution, and the 

smooth enough generalized solution is the classic solution of this problem. The 

existence of the generalized solution is proved easier than its classic analogue. The 

analysis of the classic solution adds up frequently to obtaining the generalized 

solution and proving its smoothness. Therefore, we could suppose that generalized 

solution maybe applicable for the justification of mathematical modeling. 

However, we have a serious objection. We consider the equality (8) as the 

corollary of the boundary problem (3), (4). We determine the generalized solution 

with respect to the equation (3) with the boundary conditions (4). We could apply 

the generalized solution for the justification of mathematical modeling, if it has 
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the direct physical sense only. Try to determine the equality (8) as the corollary of 

the balance relations (1), (2) without using the differential equation (3).   

Multiply the equality (1) by a smooth enough function  with zero values on 

the boundary, and integrate the result. Dividing it by the small interval length h, 

we get                           

             

  

  

0 0

0

( ) ( ) 1
( ) ( ) ( )

1 1
( ) ( ) ( ) ( )  .

L h

L h L x h

L x

x x h
q x dx x h q x dx

h h

x h q x dx x f d dx
h h

 


    
 

 
  

   

 

  

                         (9) 

Pass to the limit here with using of the mean theorem and the equality (2). We 

obtain the integral equality (8). This result is true, if the functions u and belong 

to Sobolev space 1

0H . 

Thus, the equality (8) can be obtained as the corollary of the balance relations 

(1), (2). Therefore, it has the direct physical sense. We can interpret it as the 

special form of the mathematical model of the considered physical phenomenon. 

Now we have the following definition. 

Definition 1. The boundary problem (3), (4) is called the classic model of the 

considered phenomenon, and the integral equality (8) is called its generalized 

model.  

The self-determination of the generalized model is confirmed also by the 

possibility of its direct numerical analysis. Indeed, the standard formulas of the 

approximate differentiation follow directly from the definition of the generalized 

derivative. 

Divide the given interval (0, )L  by M equal parts with the step h. Approximate 

the integrals of the equality (8) by the right rectangles formula, and approximate the 

derivatives there by the forward difference formula. We obtain 
1 1

1 1

0 0

   
M M

i i i i
i i i

i i

u u
k h f h

h h

 


 
 

 

 
  , 

where ( ).i ix   Using the discrete analogue of the formula of integration by 

parts and the boundary conditions, we obtain the difference equations (5). Thus, 

the equalities (5), (6) are the approximation of the generalized model too. Note 

that the justification of the convergence of the numerical method to the 

generalized solution is easier than to the classic solution. 

Thus, the generalized model is more preferable than the classic one. However, 

obtaining of the integral equality (8) as the corollary of the balance relations (1), 

(2) is right, if the function u belongs to Sobolev space. This set is larger than the 

space of the twice differentiable functions. However, we do not have any 

information about the properties of the state function before obtaining the 

mathematical model. Therefore, the generalized method is not applicable too for 

the justification of mathematical modeling. 
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4.    Sequential model of the stationary heat transfer phenomenon 

 

 We have the difficulty of passing to the limit. It can be substantiated with 

using properties that can be obtained after passing to the limit only. We have an 

analogue here with the notion of the limit. This is non-constructive. If we would 

like to determine the convergence of the sequence to a limit, it is necessary to 

know this limit. However, we know as a rule the sequence only. We do not know 

even if this sequence is convergent or not. Therefore, the criterions of the 

convergence are used for the practical situation. For example, the numerical 

sequence is convergent, if it is fundamental, by Cauchy criterion. The notion of 

the fundamental sequence is constructive, because it uses the elements of the 

sequence only.  

  Unfortunately, Cauchy criterion is true for the complete spaces only. 

Unfortunately, the majority of the spaces are non-complete. However, the 

fundamental sequence is convergent always on the completion of the non-

complete space. The construction of the completion uses the idea of the definition 

of the real numbers set by Cantor. Each element of this completion is the 

equivalence class of the fundamental sequences. This is the basis of the sequential 

method. 

 Try to apply the sequential method for the justification of mathematical 

modeling. We have an additional reason for it. The generalized solution of 

mathematical physics problems is based on the distributions theory. Particularly, it 

uses the generalized derivatives that are determined by the distributions theory 

technique. It is known that the distribution is a linear continuous functional on the 

set of the infinite differentiable compact functions [2]. However, there exists a 

definition of the distribution by sequential method [9]. This is an equivalence 

class of the fundamental sequences of the smooth enough functions. Now we use 

the analogical technique for the determination of the special form of the 

mathematical model. 

 Consider again the stationary heat transfer phenomenon. Divide the given 

interval by M equal parts with the step / .h L M  Determine the points  ,ix ih  

0,..., .i M  Consider an elementary cell  1, ,  1,..., .i i ix x i M    Denote be  

the set of cells { }.i The grid function on the set  is a vector of М+1 degree with 

indexes 0,..., .i M   

The state system in the cell i is characterized by the balance relations (1), (2), 

i.e. 

 ( ) ( ) ,
i

i

x h

i i

x

q x   q x h  f d 



        
   

.
i i

i i

u x u x h
q x k x

h

 
   

Using the standard denotations of the difference operators, we obtain again the 

difference relations (5) with boundary conditions (6). Now the system (5), (6) is 

obtained from the physical law directly without using the boundary problem (3), 

(4). We do not use any mathematical suppositions here. 
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Find all values = ( )i iu u x
 
from the problem (5), (6). Then determine its linear 

interpolation uh by the formula (7). Now consider the sequence of positive 

numbers { }kh  that tends to the zero, and the sequence of linear interpolations 

{ }.
khu  

Definition 2. If the sequence { }
khu  is fundamental with respect to a space H, then 

this is called the sequential model or more exact H-sequential model of the 

considered system; its equivalence class is called the sequential state.   

Our analysis will be finish, if we determine the space H such that the sequence 

{ }
khu

 
is H-sequential model of the system. 

 

5.    Justification of the sequential method 

 

Prove the following result. 

Theorem. Suppose the function k is lower bounded by a positive constant, and f 

is local integrable on the interval (0, )L  and belongs to the space 1H   that is 

adjoint to 1

0H . Then the sequence { }
khu   is the sequential model of the 

considered system with respect to the weak topology of the space 1

0H , and its 

equivalence class is the sequential state of the system. 

Proof. Consider a smooth enough function  on the interval (0, )L  with zero 

value on its boundary. Multiply the i-th equality (5) by the value i =(хi). After 

summing we get the equality  

   

1 1

1 1

.
M M

x i x i i i i

i i

k u f   
 

 

     

Using the formula of summing by parts, for all grid function {gi} with zero final 

component we have 

       
1 1 1

1 1

1 1 1 1

1 1
.

M M M M

x i i i i i i i i i ix
i i i i

g g g g g
h h

      
  

 

   

          

Then we transform the previous equality 

                                           
1 1

.
M M

i x i x i i i

i i

k u f   
 

                                        (10) 

Find the derivatives  

1,..., ,
( ) ( )

,  ,  ,  h h
i x i iх

i M
du x d x

u x
dx dx


       

where h is the linear interpolation of the grid function {i}. Now we determine 

the integral 

    

1 10

,

i

L M M
h hh h h h

i x i x i

i i

du d du d
k dx k dx h k u

dx dx dx dx

 
  

 

     

where the function kh is equal to ki on the set  i. This is the piecewise constant 

interpolation of the grid function {ki}. 

Determine the grid function {gi} from the equalities 

0
0,  ,  1,..., 1.

i ix
g g f i M     
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Using the formula of summing by parts, we get  

   
1 1 1 10

,  

i

L M M M M
h hh h

i x i x i i i i

i i i i

d d
g dx g dx h g h g h f

dx dx

 
    

   

           

where gh is the piecewise constant interpolation of the grid function {gi}. 

Now we transform the equality (10). 

                                       

0 0

.

L L

h hh h hdu d d
k dx g dx

dx dx dx

 
                                           (11) 

Choose the function  such that its grid function {i} is equal to {ui}. Then we 

have 

                                         
2

0 0

 .

L L

h hh hdu du
k dx g dx

dx dx

 
 

 
                                          (12) 

Under supposition of the theorem, there exists a positive constant k0 such that 

k(х)k0 for all  х(0,L). Hence, we obtain 

1
0

2 2
2

0 0

0 0

 = .

L L

h h h
h H

du du
k dx k dx k u

dx dx

   
   

   
   

Estimate the integral at the right-hand side of the equality (12). 

  1
02 2

20

   = 

L

h h hh h
h HL L

L

du du
g dx g u g

dx dx
 . 

From (12) for h=hk it follows that  

 
1

20
0

1
 .k

k

h

h
LH

u g
k

  

Note that the derivative of the function gh is equal to fi on the set i. By mean 

value theorem, we have the convergence of the derivative of gh to f a.e. on (0,L) as 

h0. Denote by f 

h the generalized derivative of gh. Using the condition fH-1, we 

have the convergence kh
f f  in H-1 and kh

g g  in L2 as k, where the 

generalized derivative of g is equal to f. Then the sequence  kh
g  is bounded in L2. 

From the previous inequality it follows the boundedness of the sequence { }
khu  in 

1

0H . Using Banach – Alaoglu theorem, extract a subsequence that is weakly 

convergent in the space 1

0H . Therefore, it is fundamental with respect to the weak 

topology of the considered Sobolev space. By Definition 2, this is the sequential 

model of the system, and the relevant equivalence class is the sequential state of 

the system. We can obtain this result for all subsequences of { }
khu . Then the 

whole sequence has the same properties. This completes the proof of the theorem. 

 We determine the sequential model under the suppositions with respect to the 

given functions only. We do not have a priori assumption with respect to the state 

function. Therefore, our model is substantiated. 

 Try to determine the relations between the different forms of the 

mathematical models. We can apply the known results of the convergence of the 

finite difference method here. If the function k is continuous, then after passing to 

the limit at the equality (11) we obtain the equality (8) (see [4]). Therefore, we get 
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the convergence kh
u u  weakly in 1

0H , where u is the generalized state of the 

system. Thus, we can obtain also the standard forms of the mathematical models.  

We have the following results. Under the suppositions of the theorem, we 

obtain the sequential model of the system and its sequential state. Under the 

additional assumption, we have the generalized state. This is the classical state 

under stronger properties of the parameters of the system. Thus, we have the 

equality of the three forms of the state system for the small enough parameters. 

Under weaker suppositions, it is possible non-existence of the classical state. 

However, there exist the equal generalized and sequential solutions. Using the 

weaker suppositions, we can have the sequential state only. Note that the standard 

numerical method is applicable for finding each state of the system. However, the 

proof of its convergence is easier for the weaker form of the model.  

The sequential method was used in [6] for the extension of the optimization 

control problems and in [5] for the prolongation of the binary relations. 
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